
Simple USB / DMX512 Interface with
 Arduino Micro or Arduino Leonardo
 ©2015-21 Wolfgang Schemmert 31 October 2021

The circuit described here provides an easy to build USB controller for the DMX512 lighting
bus.

Three different command sets are selectable, the command set is selected by a jumper,
which may be replaced by a switch:
--- When the ASCII text based command set is selected, the USB interface gets configured

as "USB Communication Device" (CDC/ACM class). It provides a virtual RS-232 port.
--- The MiniDMX protocol is implemented – formally as ASCII text command 'Z', so it works
 configured as "USB Communication Device", too
--- When the MIDI channel based command set is selected, the USB interface is configured

conforming to the "USB MIDI Streaming Class", i.e. is seen as a virtual MIDI port.

Due to limited SRAM of the ATmega32U4 processor, max. 256 DMX channels are supported.
An alternative firmware is available, which supports the MiniDMX protocol for 512 DMX
channels instead of the MIDI command set.

In contrast to Arduino IDE compatible DMX libraries, special DMX features like soft fading
between lighting scenes, permanent storage of líghting scenes and chaser effect are offered.
Unfortunately the downloadable hex code cannot be programmed with the Arduino IDE (flash
programming at runtime needs Boot Section) you will need an external ISP programmer

It is NOT allowed to use this device together with any sa fety critical applications , where
misfunction could result in personal injury oder noticeable material damage !
All information about this project is provided 'as is' – without any warranty

Hardware for Arduino Micro

For easy reproduction with
simple tools,the hardware is
designed to be built on a
Veroboard around an
Arduino Micro module using a
minimum of additional parts.

The USB interface is "full speed" grade, the device is USB bus powered . The supply current
is less than 100mA. A green LED signals presence of power and data flow.

Schematic diagram:
Differing from previous releases, the circuit layout is changed: PB5 (IO9) should not be connected with Ground.

Assembly:
To build an etched PCB instead of the Veroboard, a 1:1 TIF file is provided for download at the website
<www.midi-and.more.de/armicdmx.htm>.

The PCB is designed to fit into a "Bopla Unimas85" enclosure, source Reichelt (BOPLA U 85) or Conrad 540803
With slightly deplaced holes it fits into an "Eurobox" enclosure, Reichelt (EUROBOX) or Conrad part no. 523132
Resistor R1 should be carbon or metal film type, min 0.1W. The optimum value may be chosen higher or lower
than 1 kiloOhm depending on efficiency of the used LED. For blue or white LED: R1 ca. 4.7-10kOhm
Capacitor C1 should be multilayer ceramic 5.08mm raster, 50V

 3

IC1: Arduino Micro module
IC2:MAX487 8pDIL or equivalent (also useable MAX485, MAX3085)
LED: green, preferably 3mm low current type (2-4mA).
CN: source Reichelt (PS 25/3G BR) or Conrad. Wires to the XLR connector may be soldered directly, too.

Hardware for Arduino Leonardo
The DMX transmitter is mounted on a small PCB, which is directly fitted at the XLR
connector. For better solder fitness on Veroboard, a 3 pin socket was chosen . Pin numbers
are the same for 5 pin connector. If the XLR connector is a type which is mounted through
the hole, it is essential that the Veroboard is slim enough to fit through the hole too.

In this wiring example, the black wire is connected with Ground, the white wire with +5V.
The grey wire transports DMX data from Leoanardo TX (D1) to the MAX487. The violet wire
enables/disables the MAX487. It is switched low during USB enumeration to minimize supply
current. It is connected with Leonardo D2. Leonardo IO9(PB5) is ground shoreted with an
orange jumper (or switch). This configures the Leonardo seen by the PC as MIDI interface
and activates the MIDI command set. Without jumper (default), USB is configured as virtual
COM port and the ASCII/MiniDMX commands are active (assignment exchanged new rev1.13).
All connections to the Leonardo are made unsoldered with 2.54 mm pinheads.

In the following text only Arduino Micro is referred. But commands and firmware features are
the same for Arduino Leonardo

 4

Installation and Operation
Depending on the setting of the jumper JP (or switch), the device behaviour is different:

--- If the jumper is open or not installed, the fir mware is automatically configured as
a USB Communication Device (CDC/ACM class) , i.e. will be installed as a vitual
RS-232 compatible COM port.
When the microcontroller is programmed new, the default USB VID/PID for the
RS-232 compatible mode is the same as for Arduino Micro (VID=2341,PID=0037).

When you start the new programmed Arduino Micro in RS-232 compatible mode first
time, the LED initially is dark and the Windows Device manager shows "Unkown
Device".Then install "Arduino Micro.inf" manually as guided by Windows navigation.

For this purpose additionally the appropriate "Arduino Micro.inf" fi le has to be
available . This is found best the following way: Download the Arduino Software
package and install it. Open folder "Drivers". The actual file "Arduino.inf" does work
less well, so it is proposed to unzip "Old_Arduino_Drivers.zip" into new folder named
"Old_Arduino_Drivers". File "Arduino Micro.inf" is contained there, it is even
compatible with Windows2000

--- If the jumper is set or a connected switch is c losed , the firmware is automatically
configured as a USB MIDIStream device , i.e. most operating systems will recognize
it as a virtual MIDI device. In Windows Device Manager (XP and newer only,
Windows98/2000 has no built-in USB/MIDI support) it will be listed under "Audio-
Video-Game Controller" as "USB-SimpleDmx" or simply as "USB Audio Device". If you
open any MIDI software, it will be seen as MIDI port "USB-SimpleDmx" or simply as
"USB Audio Device".
If the microcontroller is programmed new, the default USB VID for the MIDI mode is
the same as for Arduino Micro (VID=2341) but the PID is =8236 (changed rev1.13).

Else the MIDI PID is always user configured PID +1.
When the interface is connected first time to a PC, it may take some time to install the
driver.

Please note that the default values for VID and PID are licensed for device test and
evaluation only! For external use, you have to ente r your own VID and PID as follows:
It is assumed that you already have some experience with the RS-232 interface.
Type 'U', follow the text messages, enter your new VID (as sequence of 4 hex digits. Enter hex

words without 0x. Case independent. Leading zeroes of the VID/PID MUST be entered, no spaces between the

nibbles) . When this is ok, enter your new PID (as sequence of 4 hex digits). The input will be
echoed. It is automatically stored in EEProm and will get active after next reset/power cycle.
Fill your own VID/PID in a ("proven" e.g.Arduino) template .inf file with an ASCII text editor,
change the file name, if wanted change manufacturer name etc. Select this file when the PC
asks for a driver.
The MIDI PID is always one higher (exept default value, which is always 8236 for better compatibility).
With ASCII command '?' the actual sytem configuration incl. VID/PID setting is returned.

To reset VID/PID to default values, connect Arduino PC7 (=IO13) with GROUND during
power up! See marker at the assembly figure above.

Hints for operation with the MiniDMX protocol are found below at page 11.
Description of the MIDI command set is found below starting from page 12.

 5

ASCII command set
is active when NO jumper JP is placed or a switch attached there is open. The associated
COM port may be set in the Device Manager. Baud rate selection of your control software
does not matter, communication is baud rate independent. Handshake is not supported.

Short reference of all ASCII commands
Sn address DMX channel (write SLOT register) for subseqent action (n=1 - 256) p.5
Vn set DMX level at DMX channel=SLOT (n=0 - 255) p.6
 ,n (comma) increment SLOT first then set level at new DMX channel (n=0 - 255) p.6
=n fill block of n DMX channels starting from SLOT+1 with level of SLOT (n=1-256) p.6
#n set DMX channel no. n (n=1-256) to DMX level entered by previous command p.6
+ increase transmit buffer level DMX channel=SLOT by one p.7
 - decrease transmit buffer level DMX channel=SLOT by one p.7
^n add n to transmit buffer level DMX channel=SLOT (n=0 - 255) p.7
_n subtract n from transmit buffer level DMX channel=SLOT (n=0 - 255) p.7
$ from now DMX level in HEX (only V , comma , ^- , _- , R and Q- command) p.7
& from now DMX level DECIMAL (only V , comma , ^ , _ , R and Q-command) p7
Hn set hue (spectral color) for RGB lamp p.8
Wn set color saturation for RGB lamp p.8
Bn set brightness (luminance) for RGB lamp p.8
Ts.t set FADETIME in 1/10s raster (0 – 12.7s) p.8
X stop fade processes and freeze them at actual DMX level p.8
Rn read n bytes starting at DMX channel=SLOT from transmit buffer p.9
Mn set the masterfader: n=0 to 200 (in percent, see detailled description below) p.9
Gn enter start scene (preset no.) of chaser cycle . See detailled description p.9
An set length of chaser cycle (n=2 to 89) and start the chaser p.9
Pt set duration of chaser step in 1/10 s units p.9
N forward chaser immediately by one step p.10
D set output of all DMX channels immediately to 0 (Panic function) p.10
Q show content of all DMX registers at DMX channel=SLOT p.10
~n save transmit buffer a as preset no. n p.10
@n load preset Nr. n into buffers p.10
| reset all buffers and configuration to default state (presets kept unchanged) p.10
Cn change MIDI channel (1-16) p.11
? return system version, USB VID/PID and MIDI channel p.11

MiniDMX protocol p.11

Detailled description of all ASCII commands:
Every control command and every state message is as signed with a single characteristic letter. If a
command expects a parameter, it is listed after the command letter in acute angular brackets <..:>, to be
entered as ASCII text (decimal (default) or – if activated - hex without 0x.This compact format is suitable to enter
commands manually as well as for automatic generation and parsing with an application software.

Address the DMX channel ("slot") to be operated with following commands:
S <channel number>

The parameter addresses a DMX channel , on which many of the subsequently described
commands have an effect. Internally the parameter value is stored in the SLOT register.

In DMX slang many times the word 'slot' is used as synononym for 'DMXchannel' because
during DMX transmission every DMX channel is repres ented by a specific time slot in the
transmission cycle. In this manual, most times "DMX channel" is used.

 6

Parameter: slot number (range 1 to 256) is the number of the DMX channel to be
manipulated with subsequent commands
Comment: No action is started immediately. But the SLOT register content will be applied to
subsequently given commands.

Example: S123 writes 123 into register SLOT

Transmit buffer manipulation:
V <level>
Write parameter into the transmit buffer of DMX cha nnel = "SLOT" .

Parameter: level (range 0 to 255) is the value (lamp intensity, e.g.) which will be
transmitted at the DMX channel addressed by SLOT.
Comment: Changes the transmitted DMX packet sequence in accordance with previously entered
values in the SLOT and FADETIME register. It depends on the selected merge method of the
addressed DMX channel if this new level gets actual ly transmitted.

If FADETIME is equal to zero, the value of the addressed DMX channel is immediately set to <level >

If FADETIME is nonzero, a fade process is started, which begins at the actual value of the adressed
DMX channel and finishes, when the value of the addressed DMX slot is equal to <level>.

Example: V34 sets the DMX level to 34 at the DMX channel which is actually addressed by SLOT
(i.e. seleceted before with the "S" command). The parameter is interpreted in the active number base .

, (comma) <level>

First this command increases the SLOT register auto matically, then it writes the
parameter into the transmit buffer for the new DMX channel = 'SLOT' .

Parameter: level (range 0 to 255) is the value or intensity which will be transmitted at
the DMX slot addressed by the new, incremented SLOT.
Comment: except the fact that the SLOT register is pre-incremented, the ',' (comma) command does
the same as the V command .

= <block length>

This command writes the final level of the DMX chan nel addressed by SLOT into the
number of <block length> DMX channels starting from (SLOT+1). Starting from the
actual level of each of these channels a new fade to this final level is started. The fade time is
given by the actual content of the FADETIME register.

Parameter: <block length> (1 to 256) is the number of DMX channels into which the
same level is copied. Independent of the value of <block length> DMX channel no.256
is not exceeded.

<channel number>
The parameter (range 1 to 256) addresses the DMX channel , where the same DMX
level is set which was entered by any previous command.
If the fade time is nonzero, a fade process is started, which begins at the actual level of the addressed
DMX channel and finishes, when the level is equal to the previously entered level.

Example: S1v35 #5 first sets DMX channel no 1 to level 35 and next channel no 5 to level 35, too.

 7

+ (no parameter)
Increase (add 1 to the) level of the DMX channel addressed by SLOT

Comment: The byte cannot be made greater than decimal 255. If it is already equal to 255, the +
command is ignored. If a fade process is active at this DMX channel, only the final value is increased.

- (minus, no parameter)

Decrease (subtract 1 from the) level of the DMX channel addressed by SLOT

Comment: The byte cannot be made less than 0. If it is already zero, the - command is ignored.
If a fade process is active at this DMX channel, only the final value is decreased.

^ <summand>
Add summand to the transmit buffer addressed by SLOT (and start a fade process)

Comment: The final value cannot be made greater than decimal 255. If the addition would make an
overflow, the result is fixed to 255.
The effect is similar to the V command. But instead of an absolute DMX level the sum of (previous entry
of VALUE plus <summand>) is restored in the VALUE register and taken as the final level of a new
triggered fade proces. Any active fade process of this DMX channel is overwritten with the new final
level and the actual fade time and restarted.

_ <subtrahend>
subtract subtrahend from the transmit buffer addressed by SLOT (and start a fade
process)

Comment: The final value cannot be made less than 0. If the subtraction would make a borrow, the
result is fixed to 0.
The effect is similar to the V command. But instead of an absolute DMX level the difference of (previous
entry of VALUE minus <subtrahend>) is restored in the VALUE register and taken as the final level of a
new triggered fade proces. Any active fade process of this DMX channel is overwritten with the new
final level and the actual fade time and restarted.

$ (no parameter)

Set number base for input/output of VALUE as hexadecimal
Comment: All following parameter values of the commands V, '.' (comma), ^ and _ are interpreted as
hexadecimal numbers (0 to FF without leading 0x).

This behavious remains active until the decimal number base is set. Because the number base is stored
in preset no. 0, loading of this preset may change the active number base. All messaged DMX level
values are coded as hexadecimal numbers with a prefix "$".

& (no parameter)

Set number base for input/output of DMX levels as decimal
Comment: All following parameter values of the commands V, '.' (comma), ^ and _ are interpreted as
decimal numbers (0 to 255).

This behavious remains active until the hex number base is set. Because the number base is stored in
preset no. 0, loading of this preset may change the active number base. All messaged DMX level values
are coded as decimal numbers without specifier symbol.

 8

H <hue>
Sets the spectral color (hue) for a group of 3 subs equent DMX channels (RGB lamp)

Comment: The hue may be entered in the range 0 to 255. This will approximately result in following
colors. Intermediate hue values will result in intermediate colors:
H0:red, H43:yellow, H85:green, H128:cyan, H170:blue, H213:magenta, H255:red again.
In correspondence with the model of the driven lamp and setting of saturation and brightness the
resulting color tone may differ somewhat.

The H command influences the actually addressed DMX channel (actual entry to the SLOT register, for
example set with command S) and the two next higher neighbours. It is provided that the RGB setting of
the respective lamp is done on these 3 successive DMX channels. All features else of a complex lamp
("fixture") may be used independently.

Every new setting of RGB-hue, color saturation and luminance is applied immediately to the 3 DMX
channels addressed by SLOT, furthermore each is stored in a global register (not individuall per DMX
channel). During every new setting of hue, saturation and luminance, the stored global values ot the
other color components are applied, too.
If set, the fade time gets also also applied in combination with the H command. But the fade transition
from the previous color tone to the new one is performed along a straight line through the color space,
not along the spectral color circle. So, if is faded between very different colors, disagreable desaturated
color tones may appear. To get a perfect color transition, up tp 6 subsequent fade steps between
neighboured colors have to be performed.The technical handling can be simplified by use of the chaser.

W <saturation>
Sets the color saturation for a group of 3 subseque nt DMX channels (RGB lamp).

Comment: The parameter of <saturation> may take values between 0 and 255. The maximum value
255 sets a pure spectral color, at lower parameter values other color components are partially added
which results in a pastel light. When the saturation is set to 0, independently of the hue setting a white
or grey light is composed.

B <brightness>
Sets the resulting brightness for a group of 3 subs equent DMX channels (RGB lamp).

Comment: the <brightness> parameter may take values between 0 and 255. The value 255 sets
maximum light intensity, the value 0 switches the light intensity off. Fading down is performed linear,
without taking the gamma characteristics of the driven lamp into account. Specially when high
performance LEDs are driven most times very strong changes of light intensity are observed at low
brightness. So in this range small parameter steps may result heavy changes of the RGB composition.

T <seconds.tenths>
Enter parameter into FADETIME . No action is started directly.

Parameter: FADETIME is always entered in 1/10seconds raster. Maximum fadetime
is 319 tenths of a second (=31.9s). Higher input will be limited to this value

Example: T134 sets FADETIME to 13.4 seconds

X (no parameter)

All fade processes are stopped immediately and all DMX channels are freezed on their
present levels

 9

Poll the transmit buffer:
R <number of bytes>

Poll <number of bytes> of the DMX transmit buffer s tarting from the DMX level = SLOT
and send them via MIDI OUT.

Parameter: number of polled bytes (1 to max. 128)
Syntax of the resulting state message:
s <1st channel no.> v [$]DMX level [,[$]DMX level] <CR >

M <percent>
Enter parameter for the masterfader . All DMX levels are modulated immediately

Parameter: The masterfader is always entered in decimal percentage scale (without
postponed % sign and independent of the number base for DMX levels).
Default =100, maximum = 200, minimum = 0.
Comment: The masterfader works like a digital signal processor when the transmit buffer is written
into the DMX transmitter hardware . It is useful for global adjustment of lighting scenes. It does not
change or influence any internal data of the DMX de vice.

The actually transmitted level of every DMX channel is the transmit buffer value multiplied by the
masterfader factor, i.e. up to 200%. Due to internal fast integer arithmetics, the transmitted level may be
slightly lower than exactly calculated (intermediate fractionals lost). Changes of the parameter are
applied immediately, not influenced by FADETIME. The masterfader parameter is not stored in presets.

G <chaser start>

Enter start scene (preset no.) of the chaser cycle
Accepted start values: 0 to 89. Default at power on:50. If the chaser would access a
preset beyond 89, the sequence continues with loading preset no. 0 etc..

A <cycle length>
Set the length of the chaser cycle (n=2 to 127) and start the chaser
 <cycle length> = 0 switches the chaser OFF

The chaser works as follows: a sequence of presets (=lighting scenes) is loaded in a
cyclic manner to DMX channels 1 to 128.
DMX channels 129 to 256 are not modified by the cha ser and may be used for
chaser indepent steady lighting.
Before the chaser can be started, the step duration (command P) as well as the start scene
(command G) has to be adjusted. Start at scene 50 and step duration 20 is loaded b y default.
The actual settings of the fade time and master fad er are applied by the chaser.

Example: if the chaser cycle is set to 4 and the the chaser start is set to 64, then presets no.
64,65,66,67 are loaded partially, then preset no. 64 again and so on

P <chaser step duration>
Set duration of chaser step in 1/10 s units (step duration = 0 to 25.5 seconds)

Comment: Default at power on: 20 (= 2 seconds). After the duration of a chaser step is over, the
chaser automatically loads the next preset in the cycl. After <cycle length> presets were loaded in
sequence, the procedure is repeated form <chaser start> .
Step duration 0 only virtually stops the chaser. It can be forwarded by one step with command "N".

 10

N (no parameter)

Forward the chaser immediately (asynchronously) by one step

D (no parameter)

Set output of all DMX channels immediately to 0 (Pa nic function). Must be entered twice.

Q (no parameter)

Returns actual settings of all registers of the DMX channel addressed by SLOT. The
response is sent as readable ASCII text

Example of a typical message: CH=1 Fin=80 TX=27 R=13 G=0 B=0 MF=50% CS=50/0/20 T=3.2

Comment about example: at the channel addressed by CH= SLOT: Fin sends the final DMX level
when fade is finished, TX reports the present level of the DMX transmit buffer, R shows the actually
transmitted level, modified by the Master Fader, G and B show the levels of the next 2 subsequent DMX
channels (i.e. RGB show the output of a RGB fixture with DMX start address= SLOT). MF reflects the
acual setting of the masterfader. To explain possible differences you are referred to the description of
commands H,W,L,+,-,^,_,T,M, (,). CS describes the actual setting of the chaser in the order: start
scene, cycle length, step duration. T reports the fade time.

~ <preset#>
save current content of the transmit buffer preset (=lighting scene) number <preset#>.

Parameter: preset # (range 0 to 89)
Comment: The parameter value of FADETIME and the number base is exclusively stored in preset
no. 0. Because this preset is automatically loaded when the device is powered on, this way a "soft start"
may be configured. With all presets else only the actual lighting scene of the transmit buffer is saved, so
these may be reloaded universally without change of system parameters.

@ <preset#>
Recalls and activates preset (= lighting scene) num ber <preset#>

Parameter: preset# (range 0 to 89)
Comment: After switching power on or after a reset automatic ally preset no. 0 is loaded.
When the fade time is set different from 0, the actual lighting scene is faded over into the loading one
with this time constant. Exception: when preset no. 0 is loaded (switching the device on, for example),
the permanently stored value of the fade time and the number base are updated.

Lighting scenes no.84 to 89 are preprogrammed by fi rmware for test of chaser and fade. May be
overweritten by user. The original scenes can only be recovered then by reprogramming the processor.

| (no parameter)

"clear all memory": all buffers and modes of operat ion are reset to default
This command has to be entered twice to protect the ligting scene against lapse of command entry

Comment: this is a kind of warm start, not a reset!
All DMX levels of the transmit buffer are reset to "0".
Number base = "decimal", Masterfader = 100%, Fade time = 0.0.
The chaser is switched OFF and parameters are reset to their default values
Presets are not deleted or changed otherwise.

 11

C <MIDI channel>
Parameter: MIDI channel 1-16 (internally in status bytes transformed to 0-15)

Parameter must be entered twice. This MIDI channel is stored in flash, but active immediately when
changed to MIDI mode of operation. New RevNum. 1.13.

? (no parameter)

A text message is returned with: Rev.Num, VID/PID, MIDI channel (actual and new entered)

Operation with MiniDMX protocol
The MiniDMX protocol is formally implemented as ASC II command 'Z' here.

The practical reason is that each MiniDMX data packet starts with the character
hex5A='Z'. This way, no switch or other configuration is necessary to s tart or
terminate operation of the MiniDMX protocol. Upon receipt of this command code,
the microcontroller jumps into an endless loop: receives MiniDmx data, transfers and
transmits them to DMX out, waits for the next 'Z', receives, transmits etc.

If no MiniDMX compatible data byte is received within max. 100 milliseconds,
processing of this data packet is cancelled, the firmware jumps back to the main ASCII
command interpreter and waits for the next 'Z'.

Once active in MiniDMX mode, this mode is locked for about 1/2 sec as safety against
faulty ASCII commands released by incomplete packets. After this timeout, MiniDMX
terminates, the complete ASCII command is active again. This way, the 'Z' command
and MiniDMX constitutes a distinct mode of operation, though it is embedded in the
ASCII protocol.

When MiniDMX data packets are received, each active fade process is terminated
immediately, the chaser is stopped. Because MiniDMX permanently transmits all DMX
channels, these effects don’t make sense and are not supported then.

Unfortunately the original website with MiniDMX specification is not available anymore.

MiniDMX packets for 256 DMX channels (type A1) and for 512 DMX channels (type
A2) are accepted, but when A2 packets are received, the data for DMX channels 257
to 512 are discarded.

The MiniDMX protocol is supported by a number PC ba sed DMX software
products like preferably 'DMXControl 3'. It is supported by 'Freestyler' too, but the
operation is less smooth then. While such a software is active, it occupies the
corresponding COM port. Parallel data input by terminal software. is impossible then.

While the MiniDMX mode is active, the LED is blinking permanently

If the alternative firmware is installed and the ju mper is set (or switch is closed)
exclusively the MiniDMX protocol is active supporti ng 512 DMX channels . All
MiniDMX features else are the same as described above.
Without jumper the complete ASCII command set and related additional features are
available - like smooth fade transitions and user predefined lighting scenes. Only 256
DMX channels are supported due to limited SRAM resources of the microcontroller.

The MIDI command set is not available with the alternative firmware.

 12

MIDI Channel Message protocol of the DMX512 transmitter
By default MIDI channel no. 1 is the base channel f or command input. This may be
changed at any time by sending a MIDI CONTROL CHANGE message to controller no.124
(hex7C) with controller value equal to the new MIDI base channel (1 to 16 (hex10)) twice in
immediate sequence : Not to cut the current session, this new channel will become active
not before the next power cycle or microcontroller reset else. Details see page 14.

Quick start and basic commands:
The most frequently used application is lighting control with NOTE ON messages from a
sequencer .

To address any of the DMX channels 1 to 127 , control data have to be sent on the
selected MIDI base channel. How to access DMX channels 128 to 256 see below.

The 1st data byte of the MIDI command defines the D MX channel to be addressed.
The 2nd data byte of the command describes the DMX level (light intensity) to be set.
 the 2nd MIDI data byte is multiplied by 2 inside the USB/DMX Interface.
 As an exception, 2nd MIDI data byte 127(0x7F) sets DMX level to max. value 255

Or described in the opposite way of thinking: to set a certain DMX level (0 to 255) with a
simple MIDI command, HALF OF the intended DMX level has to be entered in the 2nd
MIDI data byte.
Example: To set DMX channel no. 35 to level 200 send NOTE ON, note 35, velocity 100.

To write data into DMX channels 128 to 256 with Note On commands, the MIDI commands
are sent on the next higher MIDI channel as described in the table:

coded MIDI channel 1 st data byte sets SLOT address to- calculation of 1 st data byte
as selectred base channel 1 to 127 1 to 127 = DMX channel
as base channel + 1 0 to 127 128 to 255 = DMX channel minus 128

as base channel 0 special case ! 256 = 0

This means: on a sequencer program you have to reserve a block of 2 MIDI channels for
full control of the USB / DMX Interface and the corresponding edit tracks have to be
initialized. Attention: data which are meant for other MIDI equipment which works on these
channels may be misinterpreted.

All supported MIDI message types else (Control Change, Program Change, Pitch Wheel
Change) eclusively use the preset MIDI channel.

With these MIDI messages, somewhat more complex commands are implemented, which
allow to adjust any DMX channel 1 to 256 with full 8 bit accuracy . See description of the
appropriate CONTROL CHANGE and PITCH WHEEL CHANGE commands below.

The response of the USB/DMX Interface to NOTE ON messages with velocity=0 or to any
NOTE OFF messages is prevented with PROGRAM CHANGE command 121. This way you
can "play in" DMX level timing for a sequencer or similar with NOTE ON on a keyboard
without care about note ends. In this case, velocity=1 sets DMX level = 0.

 13

Survey of all MIDI Channel Commands (MIDI Implementation Chart)
Abbreviations:
DB means "data byte", DB1 means "1st data byte" (note value, controller number), DB2
means "2nd data byte" (velocity, controller value)

When using PROGRAM CHANGE commands you should take into account, that most MIDI
devices and software send the data byte value "0" when "program no.1" is selected! In the
table "DB" denotes the physically transferred data byte.

MIDI message
and coded MIDI channel

special data values function /effect p.

NOTE OFF see detailled description DMX level --> 0.
May be blocked with PROGRAM CHANGE 121

14

NOTE ON
MIDI channel = base
channel.+ next channel

DB1 = DMX channel
DB2 = DMX level ./. 2

set DMX channel and level
(only 1 MIDI message / 7bit resolution)
DMX level = DB2 * 2. DB2=127-->DMX level 255

14

CONTROL CHANGE
MIDI channel = base ch.

DB1= 1
DB2= tenth sec.0-127

set fade time 0 to 12.7 seconds
fade time = DB2 ./.10

17

! DB1= 2
DB2= seconds 0-32

set fade time in whole seconds.
DB2 = seconds (0 to 31,9 seconds)

17

 DB1 = 7
DB2 = masterfader %

set masterfader in the range 0 – 127 % 17

 DB1 = 8
DB2 = masterfader-100

set masterfader in the range 100-200 % 17

 DB1 = 16 (hex 10)
DB2 = step in 1/10 sec

set step duration of the chaser. 0 = chaser OFF.
Controlled by an internal timer.

17

 DB1 = 18 (hex 12)
DB2 = count of scenes
 per cycle

set cycle length of the chaser and start it: display
any preset (scene) 'step duration' long, then next
preset is loaded. Repeat cycle after 'count' steps

17
/18

 DB1 = 19 (hex 13)
DB2 = start preset

set start scene (preset no.) 0-89 of the chaser
cycle. See detailled description

18

 DB1 = 37 (hex 25)
DB2 = 0 to127

poll (entry of DB2) levels of DMX OUT starting from
DMX channel=SLOT (DB2=0: poll 128 channels)
Response is a SysEx message like ASCCI Cmd 'R'

18

 DB1 = 40 (hex 28) fill a block of DB2 DMX channels starting from ch.
SLOT+1 with the final level of DMX ch. "SLOT"

16

 DB1 = 64 (hex 40)
DB2 = 0 to 127

set hue (color tone) of an RGB lamp
(3 consecutive DMX channels)
see detailled description !

16

 DB1 = 65 (hex 41)
DB2 = 0 to 127

set color saturation of an RGB lamp i.e.add grey- or
white component (3 consecutive DMX channels)

16

 DB1 = 66 (hex42)
DB2 = 0 to 127

set brightness/luminance of an RGB lamp
(3 consecutive DMX channels)
see detailled description !

16

 DB1= 80 – 81
 (hex 50 – 51)

address DMX channel(SLOT) using only one single
MIDI channel. For loading data see "pitch change"

14

C DB1 = 84 (hex 54) set DMX level (@SLOT) to DB2 *2
adjust DMX level with 8 bit resolution to even value

15

 DB1 = 85 (hex 55) set DMX level (@SLOT)to DB2 *2 + 1
adjust DMX level with 8 bit resolution to odd value

15

 DB1 = 86 (hex 56) First increase DMX channel (SLOT reg.) there
set DMX level (@SLOT)to DB2 *2.
adjust DMX level with 8 bit resolution to even value

15

 DB1 = 87 (hex 57) First increase DMX channel (SLOT reg.) there
set DMX level (@SLOT)to DB2 *2 + 1
adjust DMX level with 8 bit resolution to odd value

15

 14

MIDI message
and coded MIDI channel

special data values function /effect p.

CONTROL CHANGE
MIDI channel = base ch.

DB1 = 96 (hex 60)
DB2 = preset no.

load preset no. 0 – 89. The fade time is exclusively
loaded with preset no. 0

19

 DB1 = 112 (hex 70)
DB2 = preset no.

save preset no. 0 - 89. The fade time is exclusively
saved with preset no. 0

18

 DB1 = 119 (hex 77) DB2 has the same meaning as the data byte of the
corresponding PROGRAM CHANGE command.

PROGRAM CHANGE DB = 1 Stop all fade processes, freeze at momentary level 15
MIDI channel = base ch. DB = 8 decrease DMX level (minus 1) at channel "SLOT" 15
 DB = 9 increase DMX level (plus 1) at channel "SLOT" 15
 DB = 16 (hex 10) forward chaser immediately by 1 step 18
 DB = 37 (hex25) poll actual channel configuration

Response is a SysEx message like ASCCI Cmd 'Q'
18

 DB = 120 (hex78) NOTE ON sets the level of a DMX channel
Velocity=0 and NOTE OFF are accepted (default)

19

 DB = 121 (hex79) NOTE ON sets the level of a DMX channel
Velocity=0 is ignored

19

 DB = 127 (hex7F) Clear All Memory 19
PITCH CHANGE
MIDI channel = base ch.

DB1 = less than 64 ?
DB2 = DMX level ./. 2

set DMX level at position SLOT (8bit resolution)
If DB1 >= 64, then DMX level = DB2*2 + 1

15

Easy setting of DMX channel (="SLOT") and DMX level with a single MIDI message:

NOTE ON or NOTE OFF

The first MIDI data byte (controller number or note value/pitch) sets the DMX channel.
The 2nd data byte (note velocity) describes the light intensity to be set.

The DMX level is twice of the second MIDI databyte.
Exception : velocity=127 (0x7F) sets DMX level to 255=max.
Or vice versa: the the 2nd MIDI data byte is HALF OF the intended DM X level (0 to 255).

This simple method works only for DMX channels 1 to 127.
To address DMX slots 128 to 256 , the USB / DMX Interface expects control commands on
a higher MIDI channel corresponding with following table (only valid for MIDI base channels 1 - 15):

coded MIDI channel 1 st data byte addresses DMX channel- calculation of 1 st data byte
as selected base channel 1 to 127 1 to 127 = DMX channel
as base channel + 1 0 to 127 128 to 255 = DMX channel minus 128
as base channel 0 special case ! 256 = 0

Address the active DMX channel (= "SLOT" register) with:
CONTROL CHANGE

This alternative command version is used, when all MIDI messages shall be sent on
the MIDI channel = selected base channel .
The coarse range is selected by the first data byte , which has to be chosen according to this table:

1st data byte addresses DMX chan.= SLOT 2nd data b yte calculation of 2nd data byte
 80 (hex50) 1 to 127 1 to 127 = DMX channel
 81 (hex51) 128 to 255 0 to 127 = DMX channel minus 128
 80 (hex50) 256 0 (special case!) = 0

Comment: This command does not directly trigger any action. But the updated content of the SLOT
register will be executed together with subsequent commands. In DMX slang a DMX channel is called a
"SLOT" (physically it denotes a time slot in the DMX transmit cycle, therefore this strange name)

 15

Set DMX level with 8 bit resolution at DMX channel = SLOT with:
Method 1:
PITCH WHEEL CHANGE

MIDI channel as selected base channel
1st data byte: if equal or greater than 64, "1" is added to the DMX level

 if less than 64 (hex40), nothing is added to the DMX level
2nd data byte: desired DMX level divided by 2

inside the USB / DMX Interface, this data is multiplied by 2 before it is written into the DMX
transmit buffer

Comment: This coding scheme looks strange at first glance. But it is compatible with the standard
MIDI method to put the 7 "most significant bits" of 14bit data into the second data byte zu. So it can be
used together with simple MIDI equipment, which has only 7 bit capability of PITCH WHEEL CHANGE
operation.

Method 2:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 84 (hex54) adjusts to an even DMX level
 2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2

1st data byte = 85 (hex55) adjusts to next odd DMX level
 2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2 plus 1

1st data byte = 86 (hex56) first increases the addressed DMX channel
and adjusts this one to an even DMX level

 2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2

1st data byte = 87 (hex57) first increases the addressed DMX channel
and adjusts this one to next odd DMX level

 2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2 plus 1

Simple modifications of the DMX level with:
PROGRAM CHANGE

MIDI channel as selected base channel

data byte = 1 Stop all fade processes immediately.
 Freeze all DMX levels at their present state.

data byte = 8 decrease (subtract 1 from) the level of DMX channel "SLOT"

data byte = 9 increase (add 1 to) the level of DMX channel "SLOT"
Comment: With these comands the disadvantage of lower accuray of 7 bit MIDI data can be
compensated. Furthermore it is useful to perform extremely slow fade transitions. If a fade process is
active at the addressed DMX channel, only the final DMX level is decreased or increased

 16

Set hue (color tone) of a RGB lamp with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 64 (hex 40): set hue at the addressed DMX channel + next 2
2nd databyte = hue (color tone) 0 - 127
This will approximately result in following colors. Intermediate hue values will result in intermediate
colors:
2nd databyte = 0:red, 22:yellow, 43:green, 64:cyan, 85:blue, 106:magenta, 127:red again.
In correspondence with the model of the driven lamp and setting of saturation and brightness the
resulting color tone may differ somewhat.

Comment: The command to controller number 64 influences the actually addressed DMX channel
(actual entry to the SLOT register set first by a NOTE ON or CONTROL CHANGE message) and the
two next higher DMX channels. It is provided that the RGB setting of the respective lamp is done on
these 3 subsequent DMX channels. All features else of a complex lamp ("fixture") may be used
independently.

If set, the fade time gets also also applied in combination with these commands. But the fade transition
from the previous color tone to the new one is performed along a straight line through the color space,
not along the color circle. So, if is faded between very different colors, disagreable intermediate color
tones may appear. To get a perfect color transition, up tp 6 subsequent fade steps between
neighboured colors have to be performed.The technical handling can be simplified by use of the chaser
effect.

Set color saturation of a RGB lamp with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 65 (hex 41): set saturation at the addressed DMX channel + next 2
2nd databyte = color saturation 0 - 127

Comment: "Saturation" describes the amount of white or grey in a color tone (pastel shade).
Saturation=127 gets a pure color, saturation=0 gets white or grey without specific color tone.

Set brightness/luminance of a RGB lamp with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 66 (hex 42): set luminance at the addressed DMX channel + next 2
2nd databyte = brightness/luminance 0 - 127

Fill block of DMX channels starting from "SLOT+1" with the
final level of DMX channel "SLOT" with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 40 (hex28)
2nd data byte: block length (1 to 127)
Comment: Every DMX channel in the commanded range is faded or switched from its present level
to the final state of the DMX channel wich is preselected by the SLOT register. The fade duration is
given by the actual setting of the FADETIME register.

 17

Set the Fade Time with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 1, then

2nd data byte = 0 – 127: fade time in 1/10 second units
(setting range 0 –12.7 seconds).

1st data byte = 2, then
2nd data byte = 0 – 32: fade time in whole seconds

if the 2nd data byte >= 32, it is internally limited to 31.9 sec
Comment: The actual value of the fade time is copied into the respective resource when the fade
process is started. Immediately after then the fade time can be modified without retroactivity on running
fade processes. Any number of fade processes can be active simultaneously.

Set the MASTERFADER with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 7

then 2nd data byte = 0-127 (hex 7F) masterfader setting in %
1st data byte = 8

then 2nd data byte = 0-100 (hex 64) masterfader setting 100-200%
 (internally 100 is added to the data byte)

Comment: The masterfader works like a digital signal processor when the transmit buffer is written
into the DMX transmitter hardware . It is useful for global adjustment of lighting scenes. It does not
change or influence any internal buffer of the DMX interface.

Set chaser step duration with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 16 (hex 10)
2nd data byte = (1 - 127) chaser step duration in 1/10 second units
 or = 0 switches the chaser OFF
 by default step duration of 2 seconds is active
 to provide an easy start
Comment: After the duration of any chaser step is over, the chaser automatically loads the next
preset in the cycle.
Step duration 0 only virtually stops the chaser. It can be forwarded by one step with PROGRAM
CHANGE 16

Set chaser cycle length and start it with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 18 (hex12)
2nd data byte = 2 - 127 (hex 7F) set chaser cycle length 2-89
 or = 0: switches the chaser OFF

 18

Comment: before the chaser can be started, the step duration (CONTROL CHANGE, 1st data
byte= 16) as well as the start scene (CONTROL CHANGE 1st data byte= 19) has to be adjusted –
Details see description of these commands .
As soon as <cycle length> presets are loaded in sequence, the procedure repeats form <chaser start>.
If the chaser would access a preset beyond 89, the sequence continues with loading preset no. 0 etc..

Example: if the chaser cycle is set to 4 and the the chaser start is set to 64, then presets no.
64,65,66,67 are loaded partially, then preset no. 64 again and so on

Set chaser start preset (lighting scene) with :
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 19 (hex13) ,
 2nd data byte: = chaser cylcle start preset (0 - 89)
Comment: For an easy start, start at scene 50 and step duration 20 (= 2 seconds) is preset as
default. The chaser loads only the first 128 DMX channels of the preset . The remaining upper DMX
channels can be used for chaser-independent steady light.

Forward chaser immediately (asynchronously) by 1 step with :
PROGRAM CHANGE

MIDI channel as selected base channel
data byte = 16 (hex 10) forward chaser immediately (asynchronously) by 1 step

Poll DMX transmit buffer at DMX channel ="SLOT" and subsequent ones with :
CONTROL CHANGE

MIDI channel as selected base channel
 1st data byte = 37 (hex 25)
 2nd data byte = (0 bis 127) count of DMX channels to be polled.

 = 0: poll 128 DMX channels
 This command is essentially used for tests. For better readability, the response comes
 as a SysEx message which reports the actual DMX levels in ASCII text format.

The content of the SysEx message is idential with the response to the ASCII
command 'R', which has the following syntax:

 s <1st channel no.> v [$]DMX level, [$]DMX level, ……, [$]DMX level <CR >

Save, store presets (= lighting scenes) with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 112 (hex70)
2nd data byte = 0 to 89 (hex5A): preset number to be saved
Comment : Together with preset no.0, the actual fade time, special behaviour of NOTE ON and NOTE
OFF messages (see PROGRAM CHANGE 120,121) and the ASCII number base (see ASCII
commands) is stored permanently.

 19

Load presets (= lighting scenes) with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 96 (hex60)
2nd data byte = 0 to 127 (hex7F): preset number to be loaded
Comment : After the USB / DMX Interface is powered on or the jumper setting was changed,
generally preset no.0 is loaded. Together with this preset the permanently stored fade time, special
behaviour of NOTE ON and NOTE OFF messages (see PROGRAM CHANGE 120,121) and the ASCII
number base is updated.

Lighting scenes no.84 to 89 are preprogrammed by fi rmware for test of chaser and fade. May be
overweritten by user. The original scenes can only be recovered then by reprogramming the processor.

Change mode of operation with :
PROGRAM CHANGE

MIDI channel as selected base channel

data byte = 37 (hex 25) ask configuration of DMX channel= "SLOT"
A System Exclusive message will be returned with typically following ASCII content:

<0xF0, 0x7D> CH=1 Fin=80 TX=27 R=13 G=0 B=0 MF=50% CS=50/0/20 T=3.2 <EOX=0xF7>

Comment about example: at the channel addressed by CH= SLOT: Fin sends the final DMX level
when fade is finished, TX reports the present level of the DMX transmit buffer, R shows the actually
transmitted level, modified by the Master Fader, G and B show the levels of the next 2 subsequent DMX
channels (i.e. RGB show the output of a RGB fixture with DMX start address= SLOT). MF reflects the
acual setting of the masterfader. To explain possible differences you are referred to the description of
commands H,W,L,+,-,^,_,T,M, (,). CS describes the actual setting of the chaser in the order: start
scene, cycle length, step duration. T reports the fade time.

data byte = 120 (hex 78) NOTE ON messages set DMX channel and level.
 velocity = 0 is accepted and sets the DMX level t o 0 (=default)
 Any NOTE OFF message (with arbitrary velocity) sets the DMX level to 0

data byte = 121 (hex 79) NOTE ON messages set DMX channel and level.
 NOTE ON messages with 2nd data byte (velocity) = 0 are ignored

and all NOTE OFF messages are ignored
but: NOTE ON messages with velocity = 1 set the DMX level to 0.

data byte = 127 (hex 7F) Panic: sets all transmitted DMX levels immediately to 0
This command has to be entered twice to avoid unwan ted effects

contact: wschemmert@t-online.de

* Right of technical modifications reserved. Provided 'as is' - without any warranty. Any responsibility is excluded.
* This description is for information only, no product specifications are assured in juridical sense.
* Trademarks and product names cited in this text are property of their respective owners

