
STM32F042 based DMX controller with USB Interface
 ©2017-21 Wolfgang Schemmert 22 October 2021

This is a DIY construction manual for a simple and compact DMX512 controller based on the
STM32F042F6 microcontroller (20 pin TSSOP).

DMX commands and power supply are provided via USB . It is seen by a host PC as a
MIDI interface or as a virtual COM port . Accordingly, DMX control is possible by MIDI
messages as well as by ASCII text based commands. As a special case, the MiniDMX
protocol is implemented, which is supported by a number of DMX control software, for
example "DMXControl3".

The interface is "full speed USB2.0" grade. USB class selection between MIDI and virtual COM
port (USB CDC class) is made by a jumper or switch. Detailled description see below.

It is NOT allowed to use this device together with any sa fety critical applications , where
misfunction could result in personal injury oder noticeable material damage !
All information about this project is provided 'as is' – without any warranty or responsibility

Hardware
The microcontroller is clocked by an internal oscillator (HSI48), whose frequency is
synchronized with the the USB signal. This technique provides a very stable DMX output, too.

Because it is not possible to re-start the STM32 microcontroller USART immediately after the
DMX reset pulse, the USART Tx is kept running in idle state during DMX reset. It is fed via a
resistor to the DMX driver MAX487, which is pulled low by another Open Drain output of the
microcontroller during DMX reset.
The total supply current without DMX load is ca 25 mA, with terminated DMX bus up to 50 mA.
For easy reproduction with simple tools, the hardware is built on a single layer PCB with a small number of jumper
wires. Thickness and spacing of the printed wires are designed for hobbyist technologies. Assembly is designed
pragmatically with a mixture of through hole and SMD parts.

Schematic diagram:

 2

Assembly:

This assembly drawing is shown from the component side ! IC1, IC2 and all SMD parts are
viewed through the PCB. All SMD resistors and capacitors are size 0805.

The board size is 43x30mm. R3 is only necessary to pull the BOOT0 (PB8) pin down, usually not needed. The
Reset pinhead is only necessary in seldom cases of problems with starting the SWD programmer.

Special parts:
IC1: 3.3 V regulator: LF33 CDT, source Reichelt, Conrad 1185435
IC2: STM32F042F6P6, source: www.tme.eu/de, Mouser, RS Components, Farnell
IC3: MAX487 CPA, source Reichelt, RS Components, Farnell
Connectors CN2, CN32: source Reichelt PS 25/3G BR or Conrad 741221
LED: 3mm, low current (specified for 2mA), source Reichelt and others
E1: Tantal 10uF, min 10V. A standard Electrolytic Capacitor may be used, too

Programming:

Because no RS-232 port is available on this board, programming is possible only with
an SWD programmer. Instead of buying a dedicated ST-LINK module it is recommended to
get a STM Nucleo-64 module, which is less expensive, can be configured as programmer and

 3

additionally be used for other experiments with STM32 microcontrollers. How to program
external parts with the Nucleo, read its manual. When the programmer is cut off (i.e. used
standalone, see picture above) and the programming software sends a problem like "no target
voltage", connect the 3.3V output (pin next to text U1) of the regulator (5 pins) on the ST-Link part
with R23 (4.7 kOhm, pad directed towards the SWD connector) to pretend a supply voltage of the
programmed device.

Build a short programming adaptor (see picture above, wire length max 25 cm):
--- connect the 2nd pin of the Nucleo SWD connector (counted from the side towards the Mini
USB connector) with pin PA14 of our board (red in the photo above).
--- connect the 3rd pin with Ground of our board (brown in the photo above).
--- connect the 4th pin with pin PA13 of our board (black in the photo above).
These pins are broken out at connector CN3.
--- start the ST-LINK software . Connect the Reset pin with Ground. Click item "Connect" of
the "Target" menue, after 1 second release Reset. After some seconds, a screen with the
connection report and a listing should appear. When you are connected, select
"Program&Verify" from the "Target" menue and upload the hex code. After programming, click
item "Disconnect" of the "Target" menue and remove the ST-Link adaptor.

Installation:
By default the USB interface works with the STM Vid/Pid, but this is only allowed for test
and evaluation inside your shack! For any public us e, your individual Vid/Pid must be
activated ! (how to do this see below under "Setup" page 6)

In default state, the board is connected to a virtu al COM port at the PC. This can be
observed with the Windows Device Manager. When USB is connected the first time, the driver
gets installed. If you already have installed the "STM32 Virtual Com Port Driver" for the ST-Link
programmer, by default our board uses the same driver and will be listed under "COM and LPT
ports" as "STMicroelectronics Virtual COM Port". Else download the "STM32 Virtual Com Port
Driver" from the STM website and install it. You can change the COM port number under
"advanced settings" in the Device Manager. Else keep the default settings. The baud rate is
not relevant in this case, any works. Handshake is not supported.

When a connection is made between pin PA14 (SWD-Clk pin) and Ground (e.g. place a
jumper on CN3), the board is seen by the PC as a st andard USB / MIDI interface. When
the USB cable is connected first, a driver gets installed automatically (Windows XP or later). In
the Windows Device Manager it appears under "Audio-,Video & Game Controller" as "STM32-
UsbDmx" or simply as "USB-Audio Device".
By default, the device is sensitive at MIDI Channel 1 (Status Byte low nibble = 0 !)

For a functional test and other manual MIDI DMX operation, the simple console software
"MidiTerm" is available from my website <www.midi-and-more.de>.

In ASCII as well as in MIDI mode, the DMX transmitter starts automatically with all 512 DMX
channels at zero level (or with a user designed lighting scene, see ASCII command ~ page 5).

Attention: when the jumper is set or removed during operation, the board performs a new
USB enumeration within 1-2 seconds. Unfortunately (at least under Windows) a MIDI software
or Virtual COM port on the PC has to be closed then and restarted after. The software or COM
port should be closed before mode change , else restart of this software may be blocked. In
this case, another reset/enumeration of the USB device is necessary to re-enable the software.

 4

Modes of Operation:

ASCII command set
is active when PA14 (SWD-Clk pin) is NOT connected with Ground (jumper or switch).
In context with firmware revision 1.4 (July 2020) the previous setup mode is removed and
integrated into the ASCII comand set. For this reason, some command names have changed.

Short reference of all ASCII commands
Sn address and select DMX channel for subseqent action (n=1 - 512) p.4
Vn set DMX level at addressed DMX channel (n=0 - 255) p.5
 ,n (comma) increment DMX channel address first, there set level (n=0 - 255) p.5
 + increase addressed transmit buffer level DMX channel by one p.5
 - decrease addressed transmit buffer level DMX channel by one p.5
=n set n DMX channels starting from (addressed ch.+1) to level of addressed ch. p.5
Tn soft Fade Time n in 1/10 seconds p.5
X stop (freeze) all fading processes immediately at their present levels p.5
D set output of all DMX channels immediately to 0 (Panic function) p.6
Rn read n bytes from transmit buffer starting from the addressed DMX channel p.5
Q display level of the actually selected DMX channel, Fade Time and DMX cycle p.5
Ln limit DMX cycle length to n DMX channels (n=24 to 512) p.5
~n save transmit buffer a as preset no. n p.6
@n load preset Nr. n into buffers p.6
Cn set MIDI channel used by MIDI commands (1-16) p.6
U change USB Vid/Pid p.7
? display a list of actual global parameters p.7

MiniDMX protocol p.7

Detailled description of all ASCII commands:
Every control command and every state message is as signed with a single characteristic letter. If a
command expects a parameter, it is listed after the command letter in acute angular brackets <..:>. Number
values are always in decimal format and are sent vi a USB as ASCII text.
This compact format is suitable to enter commands manually as well as for automatic generation and parsing in
an application software.

Address the DMX channel to be manipulated with following commands:
S <DMX channel number>

The parameter addresses a DMX channel , on which subsequently described commands
have an effect.

In DMX slang sometimes the word 'slot' is used as s ynononym for 'DMXchannel' because during
DMX transmission every DMX channel is represented b y a specific time slot in the transmission
cycle.

Parameter: DMX address (range 1 to 512) is the number of the DMX channel to be
manipulated with subsequent commands
Comment: No action is started immediately. But the address content will be applied to subsequently
given commands.

Example: S123 addresses DMX channel number 123

 5

Transmit buffer manipulation:
V <level>
Write parameter into the transmit buffer of the act ually adressed DMX channel .

Parameter: level (range 0 to 255) is the value (lamp intensity, e.g.) which will be
immediately transmitted at the actually addressed DMX channel.

, (comma) <level>

First this command increases the addressed DMX chan nel which gets actual for
subsequent commands. The parameter is written into the transmit buffer for the new
DMX channel' .

Parameter: level (range 0 to 255) is the value or intensity which will be immediately
transmitted at the incremented DMX channel

+ (no parameter)
Increase (add 1 to the) level of the actually addressed DMX channel

Comment: The byte cannot be made greater than decimal 255. If it is already equal to 255, the +
command is ignored. If a fade process is active at this DMX channel, only the final value is increased.

- (minus, no parameter)

Decrease (subtract 1 from the) level of the actually addressed DMX channel
Comment: The byte cannot be made less than 0. If it is already zero, the - command is ignored.
If a fade process is active at this DMX channel, only the final value is decreased.

= <block length>

This command writes the final level of the addresse d DMX channel into the number of
<block length> DMX channels starting from (addresse d channel+1) . A new fade to this
final level is started from the actual level of each of these channels. The fade time is given by
the actual content of the FADETIME register.

Parameter: <block length> (1 to 512) is the number of DMX channels into which the
same level is copied. Independent of <block length>, channel 512 is never exceeded

Additional features:
T < tenths of seconds>
Enter parameter into FADETIME . No action is started directly.

Parameter: FADETIME is always entered in tenths of seconds. Maximum fadetime is
12.7 seconds. This is valid for all subsequent level changes until a new T command is
given. At system start. the Fadetime is always initialized with 0.0s. Differing from
previous firmware versions, it is not stored in Flash anymore.

X (no parameter)
Stop (freeze) all fading processes immediately at t heir present levels

 6

D (no parameter)
Sets all DMX channels immediately to level 0. Panic function, no soft fade.
The key must be pressed a second time after 300ms to avoid simple mis-operation

R <number of bytes>

Poll <number of bytes> of the DMX transmit buffer s tarting from the actually addressed
DMX channel and send them via USB.

Parameter: number of polled bytes (1 to max. 512) . After possibly the level of DMX
channel no.512 is sent, the output stops.
Syntax of the resulting state message:
R<number of bytes> from S <1st channel no.>: V <DMX level> [,<DMX level>…] <CR >

Q (no parameter)
display level of the actually selected DMX channel, Fade Time and DMX cycle

 Additionally the level of the next 2 DMX channels is displayed,
 to get quick information about the state of a common RGB lamp.

L <number of DMX channels>
limits the DMX cycle to a specific number of DMX ch annels.
 Minimum is 24, maximum is 512

The DMX cycle length is stored together with the MIDI Channel and USB Vid/Pid in a
separate microcontroller Flash page and reloaded at system start.

~ <preset number>
save the current content of the transmit buffer per manently in the microcontroller flash
memory.
 Preset # 1 to 36 are supported
 Preset #0 (all DMX channels = 0) is not stored in Flash, but simulated by firmware.

@ <preset number>
Loads the permanently stored lighting scene into th e DMX transmit buffer.
 Preset # 0 to 36 are supported
 Preset #0 set all DMX channels to zero ("dark scene").
 In contrast to command "D", a soft fade from the previous lighting scene is performed.

Comment: at system start all DMX channels are initialized with zero level.

C <preset number>
Sets the MIDI channel which is used by the MIDI com mand set
Range 1 – 16.

The MIDI channel is stored together with the Fadetimer, DMX cycle length, and USB
Vid/Pid in a separate microcontrollerFlash page and reloaded at system start.

 7

U <USB Vid/Pid>
Sets the Vid/Pid identifiers for USB connection aft er next system start
First letter V is displayed. Enter your Vid as a 4 digit hex number
Next letter P is displayed. Enter your Pid as a 4 digit hex number
Leading zeroes must be entered.
Finally the input must be confirmed with upper case Y, else the action is cancelled.

The USB Vid/Pid is stored together with the Fadetime, DMX cycle length, MIDI Channel
and in a separate microcontrollerFlash page and reloaded at system start.
Comment: This action is critical because a correspo nding .inf file must be installed on the PC.
Else USB connection will not work any more !
Rescue if no .inf file or wrong number entered: Connect Pin A1 of the microcontoller with Ground
while system start (e.g. grounded needle). This will erase the corresponding Flash page and reset USB
Vid/Pid, MIDI channel, Fadetime and DMX cycle length to default.

? (no parameter)
display actual values of Global Parameters:
Fadetime, DMX cycle length, MIDI Channel, USB Vid/Pid

Operation with MiniDMX protocol
The MiniDMX protocol is formally implemented as ASC II command 'Z' here.

The practical reason is that each MiniDMX data packet starts with the character
hex5A='Z'. This way, no switch or other configuration is necessary to s tart or
terminate operation of the MiniDMX protocol. After the data packet is completely
received and processed successfully (i.e. put into the DMX transmission cycle), the
firmware returns back to the ASCII command main loop and waits for the next ASCII
command (or MiniDMX data packet).

If no MiniDMX compatible data byte is received within max. 100 milliseconds,
processing of this data packet is cancelled, the firmware jumps back to the main ASCII
command interpreter and waits for the next 'Z' (or which command ever). This way, the
'Z' command and MiniDMX constitutes a distinct mode of operation, though it is
embedded in the ASCII protocol.

While the MiniDMX mode is active, the LED is blinking permanently

When MiniDMX data packets are received, each active fade process is terminated
immediately.

MiniDMX packets for 256 DMX channels (type A1), for 512 DMX channels (type A2) and
for 96 DMX channels (type A0) are accepted. When A1 (or A0) packets are received,
the levels on DMX channels 257 (or 97) to 512 remain unchanged. Unfortunately the
orginal website with specification of the MiniDMX protocol is not available anymore

The MiniDMX protocol is supported by a number of go od PC based DMX software
products like preferably 'DMXControl 3'. It is supported by 'DMXControl 2' and 'Freestyler'
too, but the operation is less smooth then. While such a software is active, it occupies the
corresponding COM port. Parallel data input by terminal software etc. is impossible then.

Any software else using the virtual COM port at the PC must be closed before the
lighting software is started, else the port is bloc ked !

 8

MIDI Channel Message protocol of the DMX512 transmitter
is active when PA14 (SWD-Clk pin) is connected with Ground (jumper or switch). This is
tested only once after reset or power on.

By default MIDI channel no. 1 is the base channel f or command input. This may be
changed with ASCII command 'C'. Details see above.

Quick start and basic commands:
The most frequently used application is lighting control with NOTE ON messages from a
sequencer .

To address any of the DMX channels 1 to 127 , control data have to be sent on the selected
MIDI base channel. How to access DMX channels 128 to 256 see below.

The 1st data byte of the MIDI command defines the D MX channel to be addressed.
The 2nd data byte of the command describes the DMX level (light intensity) to be set.
 the 2nd MIDI data byte is multiplied by 2 inside the USB/DMX Interface.
 Exception : 2nd data byte 127 sets the DMX level to 255
Or described in the opposite way of thinking: to set a certain DMX level (0 to 255) with a simpl e MIDI
command, HALF OF the intended DMX level has to be e ntered in the 2nd MIDI data byte. .

To write data into DMX channels 128 to 256 with these commands, the MIDI commands are
sent on the next higher MIDI channels as described in the table:

coded MIDI channel 1 st data byte addresses DMX channel #- calculation of 1 st data byte
as selectred base channel 1 to 127 1 to 127 = DMX channel
as base channel + 1 0 to 127 128 to 255 = DMX channel minus 128
as base channel + 2 0 to 127 256 to 383 = DMX channel minus 256
as base channel + 3 0 to 127 384 to 511 = DMX channel minus 384
as base channel 0 special case ! 512 = 0

This means: on a sequencer program you have to reserve a block of 4 MIDI channels for full control of the USB
/ DMX Interface and the corresponding edit tracks have to be initialized. Attention: data which are meant for other
MIDI equipment which works on these channels may be misinterpreted.

This limitation can be worked around with somewhat more complex CONTROL CHANGE
commands, which allow to adjust any DMX channel 1 t o 512 with full 8 bit accuracy
using only the MIDI base channel . See description of the appropriate commands below.

The response of the USB/DMX Interface to NOTE ON messages with velocity=0 or to any
NOTE OFF messages is prevented with PROGRAM CHANGE command 121 and allowed
again (default state) with PROGRAM CHANGE command 120. This way you can "play in"
DMX level timing with NOTE ON on a keyboard or sequencer without care about note ends.

Survey of all MIDI Channel Commands (MIDI Implementation Chart)
Abbreviations:

DB means "data byte", DB1 means "1st data byte" (note value, controller number), DB2 means
"2nd data byte" (velocity, controller value)

When using PROGRAM CHANGE commands you should take into account, that most MIDI
devices and software physically send the data byte value "0" when "program no.1" is selected
and so on ! In the table "DB" denotes the physically transferre d data byte.
Check your equipment if the parameter has to be ent ered by 1 higher

 9

MIDI message special data values function /effect p.
NOTE OFF DB1 = DMX channel ++

DB2 = ignored
DMX level --> 0.

9/
10

NOTE ON
MIDI channel = base ch.
+ up to next 3 channels

DB1 = DMX channel ++
DB2 = DMX level ./. 2

set DMX channel and level
(only 1 MIDI message / 7bit resolution)
DMX level = DB2 * 2

9/
10

CONTROL CHANGE
MIDI channel = base ch.

DB1= 1
DB2 = 0..127

set Fade Time 0 …12.7 sec (DB2 / 10)
in steps of 1/10 sec

11

 DB1 =36 (hex24)
DB2 = 1 to 10

poll (entry of DB2) levels of DMX OUT starting from
the actually addressed DMX channel

12

 DB1 =37 (hex25)
DB2 = 1 to 127

poll (entry of DB2) levels of DMX OUT
Response is a SysEx message like ASCII Cmd "R"

12

 DB1= 40 (hex28)
DB2 = 0..127

fill DB2 DMX channels starting from (addressed
ch.+1) to the level of actually addressed channel

11

 DB1= 48 (hex30)
DB2 = 0..127

limit number of transmitted DMX channels to
(DB2+1) * 4 DB2 min= 5 �24DMX channels

12

 DB1= 80–83 (hex50-53)
DB2 = 0..127

address DMX channel using only one single MIDI
channel. "

10

 DB1 = 84 (hex 54)
DB2 = 0..127

set DMX level at addressed DMX ch. to DB2 *2
adjust DMX level with 8 bit resolution to even value

10

 DB1 = 85 (hex 55)
DB2 = 0..127

set DMX level at addressed DMX ch to DB2 *2 + 1
adjust DMX level with 8 bit resolution to odd value

10

 DB1 = 86 (hex 56)
DB2 = 0..127

First increase addressed DMX channel there
set DMX level to DB2 *2.
adjust DMX level with 8 bit resolution to even value

10

 DB1 = 87 (hex 57)
DB2 = 0..127

First increase addressed DMX channel there
set DMX level to DB2 *2 + 1
adjust DMX level with 8 bit resolution to odd value

10

 DB1 = 96 (hex 60)
DB2= preset number

load preset 0-36 from Flash memory 13

 DB1 = 112 (hex70)
DB2 = preset number

save preset 1-36 nonvolatile in flash memory
Preset#0 (all channels=0) is generated by firmware
and not stored in Flash

12

 DB1 = 119 (hex 77) DB2 has the same meaning as the data byte of the
corresponding PROGRAM CHANGE command.

PROGRAM CHANGE DB = 1 stop (freeze) all fader processes immediately 11
MIDI channel = base ch. DB = 8 decrease DMX level (minus 1) at addressd channel 11
 DB = 9 increase DMX level (plus 1) at addressed channel 11
 DB = 119 (hex 77) send the actual setup as SysEx message 12
 DB = 120 (hex 78) Note velocity 0 is transferred to DMX level (default) 13
 DB = 121 (hex 79) Note velocity 0 and Note Off is ignored 13
 DB = 127 (hex7F) Panic: set DMX level of all channels to zero 11
PITCH CHANGE
MIDI channel = base ch.

DB1 = less than 64 ?
DB2 = DMX level ./. 2

set DMX level at position SLOT (8bit resolution)
If DB1 >= 64, then DMX level = DB2*2 + 1

11

Simple setting of DMX channel and DMX transmit level

NOTE ON (NOTE OFF)
The first MIDI data byte (note value/pitch) sets the DMX channel.
The 2nd data byte (note velocity) describes the light intensity to be set.

The DMX level is twice of the second MIDI databyte.
Or vice versa: the the 2nd MIDI data byte is HALF OF the intended DM X level (0 to 255).

Following exceptions do apply:
 Velocity 127 sets the DMX level to 255
 after PROGRAM CHANGE 121 is sent, Note OFF and NOTE ON with velocity = 0 are ignored
 BUT: NOTE ON with velocity = 1 sets DMX level to 0

 10

This simple method works only for DMX channels 1 to 127.
To address DMX channels 128 to 512 , the USB / DMX Interface expects control commands
on a higher MIDI channel corresponding with following table:

coded MIDI channel 1 st data byte addresses DMX channel- calculation of 1 st data byte
as selected base channel 1 to 127 1 to 127 = DMX channel
as base channel + 1 0 to 127 128 to 255 = DMX channel minus 128
as base channel + 2 0 to 127 256 to 383 = DMX channel minus 256
as base channel + 3 0 to 127 384 to 511 = DMX channel minus 384
as base channel 0 special case ! 512 = 0

Address or select the active DMX channel with:
CONTROL CHANGE

This alternative command version is used, when all MIDI messages shall be sent on
the MIDI channel = selected base channel .
The coarse range is selected by the first data byte , which has to be chosen according to this table:

1st data byte addresses DMX channel no. 2nd data b yte calculation of 2nd data byte
 80 (hex50) 1 to 127 1 to 127 = DMX channel
 81 (hex51) 128 to 255 0 to 127 = DMX channel minus 128
 82 (hex53) 256 to 2383 0 to 127 = DMX channel minus 256
 83 (hex53) 384 to 511 0 to 127 = DMX channel minus 384
 80 (hex50) 512 0 (special case!) = 0

This command does not directly trigger any action. But the updated active DMX address
register will be executed together with subsequent commands.

Set DMX level with 8 bit resolution at the addressed DMX channel with:

Method 1:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 84 (hex54) adjusts to an even DMX level
2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2

1st data byte = 85 (hex55) adjusts to next odd DMX level
2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2 plus 1

1st data byte = 86 (hex56) first increases the addressed DMX channel
and adjusts this one to an even DMX level

2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2

1st data byte = 87 (hex57) first increases the addressed DMX channel
and adjusts this one to next odd DMX level

2nd data byte: desired DMX level divided by 2
 i.e vice versa: DMX level= 2nd data byte * 2 plus 1

 11

Method 2:
PITCH WHEEL CHANGE

MIDI channel as selected base channel
1st data byte: if equal or greater than 64, "1" is added to the DMX level

 if less than 64 (hex40), nothing is added to the DMX level
2nd data byte: desired DMX level divided by 2

 inside the USB / DMX Interface, this value is multiplied by 2 and
 incremented (or not) according to value of 1st data byte before it is
 written into the DMX transmit buffer

Comment: This coding scheme is compatible with the standard MIDI method to put the 7 "most
significant bits" of 14bit data into the second data byte zu. This way it can be used together with simple
MIDI equipment, which has only 7 bit capability of PITCH WHEEL CHANGE operation.

Set Fade Time with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 1, then
2nd data byte = 0 – 127: fade time in 1/10second units
 (setting range 0 –12.7 seconds).
The actual value of Fade Time is copied into the respective resource when the fade process is started.
Immediately after then the Fade Time can be modified without retroactivity on running fade processes.

Simple modifications of the DMX level with:
PROGRAM CHANGE

MIDI channel as selected base channel
data byte = 1 stops (freezes) all active fader processes immmediately. //new REVNUM 5

data byte = 8 decrease (subtract 1 from) the level of the addressed DMX channel
data byte = 9 increase (add 1 to) the level of the addressed DMX channel
These comands useful to perform extremely slow fade transitions and to make fine level adjustmets

data byte = 127 (hex 7F) sets all DMX channels immediately to level 0 ("Panic switch")

Fill block of DMX channels starting from (addressed channel+1) with the
final level of the actually addressed DMX channel with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 40 (hex28) //changed REVNUM 5
2nd data byte: block length (1 to 127)

 12

Poll DMX transmit buffer at/from the actually addressed DMX channel:
CONTROL CHANGE
 Method 1:

MIDI channel as selected base channel
 1st data byte = 36 (hex 24)
 2nd data byte 1 to 10
 The response comes as a sequence of CONTROL CHANGE messages:
 first CC : actually addressed DMX channel, format as described for CC 80-83
 second CC : 1st data byte = 1, 2nd data byte = actual Fade Time
 following CCs :DMX level at this and subsequent channels, format as CC 84,85

Method 2: //new REVNUM 5
MIDI channel as selected base channel

 1st data byte = 37 (hex 25)
 2nd data byte 1 to 127
 The response comes as a SysEx message with content as ASCII command "R"
 The SysEx Manufacturer ID is simply 1 byte hex 7D (non commercial ID)

Poll actual DMX setup:
PROGRAM CHANGE

MIDI channel as selected base channel
 data byte = 119 (hex 77)
 The response comes as a SysEx message with content as ASCII command "Q"
 The SysEx Manufacturer ID is simply 1 byte hex 7D (non commercial ID)

Limit the number of transmitted DMX channels ("DMX cycle") with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 48 (hex30) //changed REVNUM 5

2nd data byte = 5 … 127 (hex 7F)
The number of transmitted DMX channels (DMX cycle length) is calculated as follows:
cycle = (2nd data byte+1) * 4 . The minimum 2nd data byte is =5 -> 24 DMX channels

Save, store preset (= actual lighting scene) with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 112 (hex70)
2nd data byte = 1 … 36 (preset number)
The actual lighting scene is stored nonvolatile in the microcontroller flash memory.
Preset#0 (all DMX channels = 0) is generated by firmware and not stored in Flash.

 13

Load preset (= lighting scene) into DMX transmit buffer with:
CONTROL CHANGE

MIDI channel as selected base channel
1st data byte = 96 (hex60)
2nd data byte = 0 … 36 (preset number)

Change mode of operation with :
PROGRAM CHANGE

MIDI channel as selected base channel

data byte = 1
 stops (freezes) all active fader processes immmediately.

data byte = 120 (hex 78) NOTE ON messages with 2nd data byte (velocity) = 0
 are accepted and set the DMX level to 0 (=default)
 Any NOTE OFF message (with arbitrary velocity) sets the DMX level to 0

data byte = 121 (hex 79) NOTE ON messages with 2nd data byte (velocity) = 0
 are ignored and all NOTE OFF messages are ignored
 but: NOTE ON messages with velocity = 1 set the DMX level to 0.
 This mode is active, until it is revised with PROGRAM CHANGE 120 or device new start

contact: wschemmert@t-online.de

* Right of technical modifications reserved. Provided 'as is' - without any warranty. Any responsibility is excluded.
* This description is for information only, no product specifications are assured in juridical sense.
* Trademarks and product names cited in this text are property of their respective owners

